顶交

2: 001.
更新时间:2019-08-25 22:23 浏览:59 关闭窗口 打印此页

  任何两条直线可以看成一个组合,这样的组合有C(n,2)=n(n-1)/2 ,每个组合有两对对顶角 ,因此n条直线条直线)对不同的对顶角;

  对顶角(vertical angles, opposite angles)即如果一个角的两边分别是另一个角两边的反向延长线,且这两个角有公共顶点,那么这两个角是对顶角·对顶角的范围介于0度到180度之间,0度和180度不算在内。对顶角是具有特殊位置的两个角,对顶角相等反映的是两个角之间的大小关系。

  通常用于测量角度以及证明全等三角形。以下是一个利用对顶角证明全等三角形的例子:

  。则形成四个角:∠AOB、∠COD、∠AOC、∠BOD。其中,∠AOB和∠COD互为对顶角,∠AOC和∠BOD互为对顶角。∠AOB = ∠COD,∠AOC = ∠BOD。

  声明:百科词条人人可编辑,词条创建和修改均免费,绝不存在官方及代理商付费代编,请勿上当受骗。详情

  是两个角之间的一种位置关系。两条直线相交时会产生一个交点,并产生以这个交点为顶点的四个角。称其中不相邻的两个角互为

  如图1, 两条直线相交,构成两对对顶角。∠1与∠3为一对对顶角,∠2与∠4为一对对顶角。

  萧国梁. 对顶角[J]. 初中生数学学习, 1995, 2: 001.

  勒斯生于希腊,是一位擅长于几何学的数学家及哲学家。他一生发现了多个几何学定理,包括等腰三角形中的“等边对等角”定理,也包括对顶角定理。

  在以上证明中,∠AEB=∠CED的结论就是通过对顶角定理得出的。注意,在一般的几何证明中,对顶角定理

上一篇文章:上一篇:每条棱的两端就是2个顶角
下一篇文章 :下一篇:没有了
友情链接:

公司地址:

监督热线: